

Version 3.1 - 2025

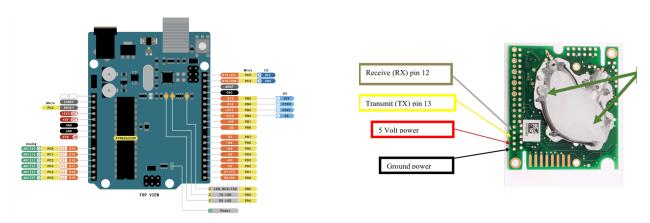
1. Overview

This guide explains how to build, program, and set up four versions of a CO₂ monitoring device that uploads live data to a Firebase database and displays it through a web dashboard.

Supported hardware configurations:

- 1. K30 Sensor + Arduino Uno R4 WiFi
- 2. SCD30 Sensor + Arduino Uno R4 WiFi
- 3. K30 Sensor + ESP32 Dev Board
- 4. SCD30 Sensor + ESP32 Dev Board

2. Ordering the Parts


You will need one set of the following for your chosen version:

Part	Description	Example Source
Arduino Uno R4 WiFi	Wi-Fi enabled microcontroller	Arduino.cc or Amazon

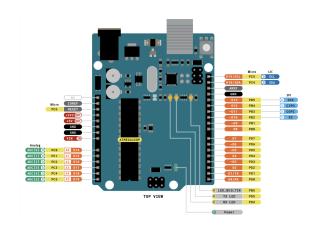
ESP32 Dev Board (WROOM-32)	Wi-Fi microcontroller	Amazon, Adafruit
K30 CO₂ Sensor	NDIR CO ₂ sensor (5V logic)	CO2meter.com
SCD30 CO ₂ Sensor	I ² C CO ₂ sensor (3.3–5V logic)	SparkFun or Adafruit
Jumper wires	Male-to-female	Amazon
Breadboard	For temporary connections	Amazon
USB cable	USB-A to Micro USB (ESP32) or USB-C (Uno R4 WiFi)	Included with board

3. Connecting the Parts

3.1 K30 Sensor → Arduino Uno R4 WiFi

K30 Pin	Uno R4 WiFi Pin
RX	D12
TX	D13
5\/	5\ <i>/</i>

GND GND


(Use SoftwareSerial on pins 12 and 13)

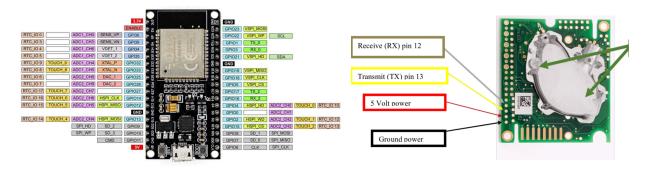
3.2 SCD30 Sensor → Arduino Uno R4 WiFi

PINOUT

Sensor de calidad del aire SCD30 CO2

SCD30 Pin Uno R4 WiFi Pin

VIN 5V


GND GND

SCL A5

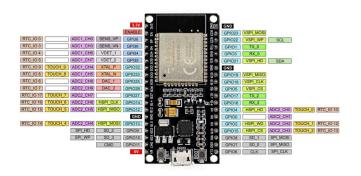
SDA A4

(I²C protocol – no SoftwareSerial needed)

3.3 K30 Sensor → ESP32 Dev Board

K30 Pin ESP32 Pin

RX GPIO12


TX GPIO13

5V 5V

GND GND

(Use `SoftwareSerial(12,13)` as shown in code)

3.4 SCD30 Sensor → ESP32 Dev Board

PINOUT

Sensor de calidad del aire SCD30 CO2

VIN (3.3V a 5.5V)
GND
TX / SCL
RX / SDA
RDY (pato listo)
PWM (salida)
SEL (Bit de Selección)

SCD30 Pin ESP32 Pin

VIN 3.3V or 5V

GND GND

SCL GPIO22 SDA GPIO21

Important Notes

- Double-check voltage:
- ESP32 logic is 3.3V
- K30 and SCD30 tolerate 5V safely.
- · Always power through USB when programming.

4. Installing the Arduino IDE

- 1. Go to https://www.arduino.cc/en/software
- 2. Download Arduino IDE for your operating system (Mac, Windows, or Linux).
- 3. Install and open it.
- 4. Go to Tools \rightarrow Board \rightarrow Board Manager.
 - Install Arduino Uno R4 Boards if using Uno R4 WiFi.
 - Install ESP32 Boards by searching "ESP32" (by Espressif Systems).
- 5. Select your board under **Tools** \rightarrow **Board** and choose the correct COM port under **Tools** \rightarrow **Port**.

5. Installing Required Libraries

In **Arduino IDE** \rightarrow **Tools** \rightarrow **Manage Libraries**, search and install the following:

Library	Purpose
WiFiS3	Wi-Fi for Uno R4 WiFi
WiFiSSLClient	Secure HTTP for Uno R4

WiFi or WiFi.h

ArduinoJson

SoftwareSerial

NTPClient

SparkFun_SCD30_Arduino_Lib

For SCD30 sensors

rary

ESP32 Wi-Fi

JSON encoding for Firebase

Serial communication for K30

Real-time clock synchronization

For SCD30 sensors

6. Uploading the Correct Code

Each device type has its own code file.

1. Download the code below for your hardware setup into a new Arduino sketch.

■ FINAL-WORKING-V5.ino

2. Update the following fields before uploading:

```
#define WIFI_SSID "YourWiFiName"
#define WIFI_PASSWORD "YourWiFiPassword"

const char* FIREBASE_HOST = "your-firebase-project.firebaseio.com";
const char* FIREBASE_SECRET = "your-database-secret";
const char* DEVICE_ID = "YourDeviceName";
```

- 3. Click the **checkmark** to verify, then **upload** (right arrow).
- 4. Watch the Serial Monitor ('Tools → Serial Monitor') for messages.

7. Setting Up Firebase (Secure Mode)

- 1. Go to https://firebase.google.com → Go to Console.
- 2. Click Create New Firebase Project, name it `CO2-Monitor`, and disable Google Analytics.
- 3. Go to Build \rightarrow Realtime Database \rightarrow Create Database.

- Choose a region (e.g., `us-central1`).
- Choose Start in Locked Mode (NOT test mode).
- 4. Under **Rules**, replace with:

```
{
    "rules": {
        ".read": true,
        ".write": false,
        "readings": {
            ".read": true,
            ".write": "auth != null"
        },
        "errors": {
            ".read": true,
            ".write": "auth != null"
        }
    }
}
```

- 5. Go to Project Settings \rightarrow Service Accounts \rightarrow Database Secrets.
 - Copy your **Database Secret** (used in your Arduino code).

8. Setting Up the Web Dashboard

8.1 Requirements

- macOS or Linux preferred.
- Homebrew and Node.js installed.

8.2 Installing Dependencies

Open Terminal and run:

```
/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```

8.3 Setting Up the Web App

- 1. Download the provided `co2-dashboard-copy.zip`.
- 2. Extract it to your `Documents` folder so the path becomes: `~/Documents/co2-dashboard-copy/public/index.html`
- 3. Open the folder in Terminal:

```
cd ~/Documents/co2-dashboard-copy
```

4. Edit `public/index.html` in a text editor.

Replace the Firebase configuration with your project's details:

```
const firebaseConfig = {
   apiKey: "YOUR_API_KEY",
   authDomain: "YOUR_PROJECT_ID.firebaseapp.com",
   databaseURL: "https://YOUR_PROJECT_ID-default-rtdb.firebaseio.com",
   projectId: "YOUR_PROJECT_ID",
   storageBucket: "YOUR_PROJECT_ID.appspot.com",
   messagingSenderId: "YOUR_SENDER_ID",
   appId: "YOUR_APP_ID"
};
```

- 5. Save the file.
- 8.4 Viewing the Dashboard

In Terminal:

```
npm install -g serve
serve public
```

Then open the displayed local URL (e.g., `http://localhost:3000`) in your browser. Your live CO₂ readings will appear on the dashboard map and chart.

9. Maintenance and Tips

- The system auto-reboots every 24 hours to prevent crashes.
- You can monitor Firebase data directly from the Firebase Console under **Realtime Database → readings**.
- To add more devices, copy one of the Arduino sketches and change the `DEVICE_ID` to a unique name.

10. Troubleshooting

Problem	Possible Cause	Solution
No Wi-Fi connection	Wrong SSID or password	Double-check credentials
-1 PPM values	Sensor error	Check wiring and sensor power
Dashboard not updating	Cached data	Refresh browser or clear cache
Upload failed	Wrong board or COM port	Re-select board and port in Tools menu
Firebase "Permission denied"	Rules too strict	Ensure .write rules allow authenticated writes